

 Conception and Evaluation of a Procedural Music System

for Engagement with Player Emotion and Memory

in Digital Games
PROJECT DOCUMENTATION

by

Vadim Nickel
-
-

submitted to obtain the degree of

MASTER OF ARTS (M.A.)

at

TH KÖLN UNIVERSITY OF APPLIED SCIENCES
COLOGNE GAME LAB

Course of Studies
DIGITAL GAMES

First supervisor: Prof. Dr. Cécile LE PRADO
TH Köln University of Applied Sciences

Second supervisor: Prof. Dr. Sonia FIZEK
TH Köln University of Applied Sciences

Written in the Summer Term 2021
Submitted on September 17th, 2021

2

Table of Contents

1. Development.. 3

1.1. Background ... 3

1.2. Proof-of-concept .. 3

1.3. Implementation .. 4

1.4. Prototyping .. 4

1.5. Technology .. 5

2. Control components ... 7

2.1. ProcMu Master ... 7

2.2. Interpolator .. 8

2.3. ProcMu Guidance .. 9

2.4. Music Zone ... 10

3. Music configuration .. 11

3.1. General settings .. 11

3.2. Euclidean Rhythms ... 12

3.3. Chord Player .. 13

3.4. Sample And Hold Melody / Sample and Hold Bass ... 14

3.5. Synthesizer configuration ... 15

3.6. Scale ... 16

4. Technical implementation of experiment .. 17

4.1. Experiment Starter... 17

4.2. Experiment Conductor .. 17

4.3. Game Action .. 17

4.4. Survey .. 18

4.5. Azure .. 18

4.6. Data collection and processing .. 18

Declaration of Authorship ... 19

3

1. Development
1.1. Background
In my Bachelor thesis “Generative Music in Digital Games – Application and

Evaluation of Procedural Content Generation Principles”, I had first researched the

concept of generative music and its application in digital games. For the practical

project of that thesis, I had developed a generative music system using Unity and

ChucK, which could generate multi-layered music based on a given configuration.

Using triggers placed in the game environment, changes in the generative parameters

of the musical output could be initiated.

However, this system required extensive effort in configuring the music generation

parameters and would rely on additional program logic to provide a dynamic outcome.

Further, it was sample-based and did not allow for sound synthesis and therefore more

granular sound manipulation in real-time.

At the time, I had already been working on a personal project called Zolar, a first-

person puzzle adventure game. One of the rewarding experiences in puzzle games

occurs when the player manages to overcome an obstacle via logical reasoning, i.e.,

solving a puzzle. However, the solution is not always clear, and players may end up

wandering the game environment, not knowing what to do. I was looking for ways to

provide clues to the player without interfering with their own reasoning, and thus

possibly diminishing the rewarding experience. Being aware of the emotional impact

music can have, I decided to develop an approach which uses music to guide the

player: a location-based approach. This means that each area in the game

environment should have its own music style, a musical signature. Over time, the

player should internalize the respective musical signatures, and may therefore be

lured towards an area by playing back the music of the target area.

1.2. Proof-of-concept
I first implemented a rudimentary approach to location-based procedural music in

Zolar. Here, a constant musical output was generated by selecting from various audio

sample collections in random intervals. The minimum and maximum possible interval

could be set manually. Multiple layers allowed for overlapping sample playback,

creating a dense musical structure. Samples could be assigned to different areas in

the game environment. Based on the player’s proximity to these areas, the likelihood

4

of triggering a specific sample increased with proximity of the player to the respective

area. Therefore, as the player moves through the environment, the music would

gradually change from one style to another.

After conducting the research that is presented in the thesis, I realized that this

location-based approach could be enhanced to involve the player’s emotions. By

additionally modifying various parameters in the music generation, the player’s

behavior should be influenced. If the player takes too long to proceed in the game, the

music should become more intense, suggesting a sense of urgency, with the intention

of making the player find their goal faster.

1.3. Implementation
Having in mind the complex structure of the generative music system that I created for

my bachelor thesis, my approach for this new system was to find a way to unify musical

expressivity with good usability. For the new system, I chose a modular approach:

various modules that are dedicated to a specific purpose could be combined to create

more complex music structures. They needed to be configurable with a minimum

number of parameters. The new system would be called ProcMu – procedural music.

Its functionality is presented below.

1.4. Prototyping
Individual modules were first prototyped in a virtual modular system setup using Bitwig

Grid1. Below is an example for the prototype of the Sample and Hold Melody module:

1 Modular systems are comprised of various individual units with different functions, such as oscillators
or filters. Synthesizers are a fixed combination of such units with a pre-determined signal path. A
modular system allows to rearrange and connect the units as desired, changing the various
characteristics of the ensuing sound. There are many software implementations of such systems, such
as Bitwig Grid or VCV Rack.

5

Next, the modules were recreated in Csound. Before they were integrated with Unity,

they worked as standalone units with their own user interface for further development

and debugging.

Below is the interface for the prototype of the Euclidean Rhythm module:

After initial development of the modules, they were combined with a sequencer that

controls the speed of the music playback and timing of individual notes. Then, using

CsoundUnity, an interface between the game engine and the Csound component was

created.

1.5. Technology
Csound2
Csound is an audio programming language. It was originally created by Barry Vercoe

in 1985 at the MIT Media Lab. It is based on MUSIC-N, which was originally written by

Max Mathews in 1957 at Bell Labs. Csound is still being actively developed by a

dedicated community.

This framework has been chosen because it can be easily integrated into the Unity

engine via CsoundUnity (see below).

Furthermore, it is compatible across all common operating systems and architectures,

allowing the use of ProcMu beyond the scenario presented in the theoretical part of

this thesis.

2 Available on: https://csound.com/download, last checked on 15.09.21

https://csound.com/download

6

Such additional scenarios include but are not limited to: Integration of the system into

other engines, e.g., Unreal Engine, Godot; integration into embedded systems, e.g.,

Raspberry Pi, Arduino, taking parameter values from external sensors, creating

hardware controllers…

Unity3
Unity is a 3d game engine, which was originally released by Unity Technologies in

2005. It is used to provide the environment for the experiment which is part of the

thesis. For the technical implementation of the experiment, see 7.

CSoundUnity4
CsoundUnity is an interface plugin that allows to send data from Unity to Csound and

receive audio from Csound in Unity. It was originally released in 2015 and is still in

active development by Rory Walsh.

The schematic below shows the functional structure of ProcMu:

Configuration information is passed from Unity to Csound. The configuration is

determined by the music configuration object (see 2). According to the configuration

received from Unity, Csound will generated timed audio in real-time, through playback

of samples and real-time synthesis. The resulting audio is passed back to Unity.

3 Available on: https://store.unity.com/front-page, last checked on 15.09.21
4 Available on: https://rorywalsh.github.io/CsoundUnity, last checked on 15.09.21

Music Zones

Interpolation

Randomization

Clock/Sequencer

Sampling

Audio synthesis

Configuration

Audio output Unity Csound

https://store.unity.com/front-page
https://rorywalsh.github.io/CsoundUnity

7

2. Control components
2.1. ProcMu Master

Description
Responsible for transferring the global musical configuration to Csound.

Configuration parameters
 Csound Unity: Unity to Csound interface object.

 BPM: Current tempo of music.

 Intensity: Current intensity. Determines which parts of a musical configuration are

considered for music generation. Each music configuration provides generative

parameters for both the lowest possible intensity (0) and the highest possible

intensity (1). Settings are interpolated, based on the current intensity value, e.g., if

the current intensity is 0.5, then the settings will be an even mixture of the

configurations for the lowest and highest intensity value (see 4.3).

 Music Config: Global music configuration. Can either remain static, or changed by

external components, such as the interpolator.

8

2.2. Interpolator

Description
Creates a music configuration dynamically, based on the position of the reference

object. The parameters of the configuration are a result of interpolating between the

values set in the music configurations of the music zones in proximity of the reference

object. Interpolation is weighted according to the distance of the surrounding music

zones to the reference object. The closer it is to a specific music zone, the more its

value contributes to the final result. If a value cannot be interpolated, e.g., the musical

scale, the setting of the closest music zone is used.

Configuration parameters
 ProcMu Master: The ProcMu Master object that is controlled by the interpolator.

 Layer Mask: The layer that the music zones are assigned to.

 Reference Object: The object whose position is referenced for interpolation. This

can be either the player or any other object.

 BPM Mode: Chooses how music playback speed is determined. Global: The bpm

value set in the ProcMu master component is used and remains unchanged. Local:

The bpm value is adjusted automatically by interpolating between bpm values

assigned to music zones in vicinity, changing dynamically with the reference

position.

 Max Distance: Maximum distance of music zone center to the reference position.

 Max Zones: Maximum number of music zones within distance considered for

interpolation.

 Cps: Checks per second, i.e., how often interpolation is performed. Higher values

allow for smoother interpolation but may also have a larger performance impact.

9

2.3. ProcMu Guidance

Description
Provides a reference position for the interpolator that will move between player and

target position. The guidance transform must be associated to the reference object in

the interpolator if guidance is to be used. This is to guide the player using music, as it

will over time resemble the style associated with the target position area.

Configuration parameters
 Player transform: Player reference object.

 Guidance transform: Guidance reference object that is moved between player and

target position.

 Target position: Position to which the player is intended to be lured by the guidance

system.

 Guidance strength: Defines where the reference position lies between player

position (strength = 0) and target position (strength = 1).

 Guidance time: The time in seconds it takes the guidance system to go from 0 to

1 strength once guidance process is initiated.

10

2.4. Music Zone

Description
A music zone defines the area in which its configuration is used for music generation.

Configuration parameters
 Inner radius: When the reference position is within the inner radius of a music zone,

the interpolator will exclusively use the configuration of the respective zone.

 Outer radius: When the reference position is within the outer radius of multiple

music zones, the musical output will be a result of interpolating the values of all

music zones within a defined range around the reference point. The likelihood of

using the configuration of a specific music zone depends on the proximity of the

reference point to each respective zone: The closer it is to the center of a zone, the

more likely its configuration is used for music generation.

 Config: The music configuration that is associated with the music zone.

11

3. Music configuration
The procedural music output is comprised of multiple layers. Each layer uses a

different module to generate a musical element. The configuration of modules is

defined in the music configuration. There are modules for percussive, as well as

melodic output, which are presented in the following. All modules hold two

configuration states, one for minimum (0) and one for maximum (1) intensity.

3.1. General settings

Description
The general settings control the operation of all modules.

Configuration parameters
 BPM: The tempo associated to the musical configuration. This is used to define a

specific tempo per music zone.

 Scale: Holds all possible notes that can be played by the sound modules,

depending on their respective set octave ranges.

 Active bars: The sequencer constantly iterates through sets of four bars with 16

steps each. This option allows to activate or deactivate playback of individual

modules for the duration of one bar each. If the given intensity value is < 0.5 the

left block is used, if > 0.5 the right block is used.

12

3.2. Euclidean Rhythms

Description
This module is a sampler for up to four percussive sounds. Samples must first be

added to the sample database (see 4.1). The module contains a sequencer that

repeatedly iterates through a cycle of 16 steps. The sequencer moves to the next step

every time it receives a trigger signal from the clock. If the last step (16) has been

reached, the cycle is repeated, going back to the first step.

Pulses, i.e., signals to play a percussive sound, are automatically distributed as

equally as possible across all 16 steps, according to the Euclidean rhythm algorithm

by Toussaint (see thesis for information). The number of pulses can be varied

automatically and randomly, according to the configuration of the module.

Configuration parameters
 Sample: One audio sample per layer can be assigned, defining the sound that is

heard when a percussion is triggered. Samples can be added using the sample

manager utility that comes with ProcMu.

 Min/max pulses: Defines how often the respective percussive sample is triggered

per layer. On each cycle, a number within the min/max range is randomly

determined.

13

3.3. Chord Player

Description
Plays multiple notes simultaneously when triggered, forming a chord.

Configuration parameters
 Trigger: Defines how often a chord is played, per cycle of 16 steps. On each cycle,

a number within the min/max range is randomly determined. The distribution of

triggers works in the same way as for the Euclidean rhythm module.

 Octave: Defines which part of the scale is used to determine the chord notes.

 Chord mode: The algorithm used for generating chords based on the given scale

and octave setting. Currently, two modes are supported: Triads will generate a

chord from three notes, triads oct will do the same, adding another note one octave

lower than the root note of the chord.

 Synth config: The synthesizer parameters used by the module, defining the

properties of the ensuing sound.

14

3.4. Sample And Hold Melody / Sample and Hold Bass

Description
Plays a monophonic melody according to given parameters. Currently, the modules

for bass and melody are identical, meant to support low-pitch and high-pitch melodies

playing simultaneously and independently of each other.

Configuration parameters
 Trigger: Defines how often individual notes of the melody are played, per cycle of

16 steps. On each cycle, a number within the min/max range is randomly

determined. The distribution of triggers works in the same way as for the Euclidean

rhythm module.

 Octave: Defines which part of the scale is used to determine the melody notes.

 Melody curve: Defines the movement of the melody by sampling fundamental

waveforms. Saw generates a descending melody that starts at the highest possible

pitch in the scale within the octave range after reaching the lowest possible pitch.

Sine smoothly moves up and down the scale. Square alternates between the

lowest and highest possible notes. Pulse plays the highest possible note, followed

by a series of lowest notes.

15

 Melody mode: Retriggered mode triggers individual notes, according to the trigger

parameters. Further, a continuous mode is planned, using a continuous sound that

changes in pitch, fading in and out according to an occurrence parameter.

 Synth config: Same as in chord player.

3.5. Synthesizer configuration

Description
The synthesizer configuration defines the sound characteristics of the virtual

synthesizer that is used by the chords and sample and hold melody/bass modules.

The parameters, which can be seen in the picture above, correspond to a typical

synthesizer design. The signal path is based on that of a Dave Smith Instruments

Prophet ’08 hardware synthesizer, albeit in a reduced manner and with an additional

reverb feature.

16

3.6. Scale

Description
The scale object holds a selection of notes that are allowed to be played by the

modules that use a scale. The octave range from which notes in the scale are taken

is chosen based on what is defined in the configuration of the respective module.

Scales can be set by manually choosing which notes are active, or by generating them

from a set of available scales.

17

4. Technical implementation of experiment
To perform and evaluate the experiment, which is part of the thesis, a custom solution

for time measurement as well as survey provision and collection was implemented. In

the following, the individual components of the experiment solution are presented.

4.1. Experiment Starter
Description
Responsible for initiating the experiment. For the thesis, three different experiment

groups were implemented. When a participant starts the experiment, they are

randomly assigned to one of the three groups.

The probability to be assigned to a specific experiment group can be adjusted. This is

useful when participants are not equally distributed among the given groups. However,

to change the probabilities in the experiment application, it must be updated. In the

future, participants shall be automatically assigned to the group that has the smallest

number of participants by checking previous submissions.

4.2. Experiment Conductor
Description
Holds a series of actions that define the experimental process, such as resetting the

player position, controlling music playback (e.g., turning the music off when text is

displayed, or turning it on during the rounds), displaying the survey, enabling/disabling

controls, etc.

4.3. Game Action
Description
The game consists of the participant having to find a star-shaped object. The Game

Action component measures the time the participant takes to find the object for each

round. It is further responsible to abort the round if it takes more than 180 seconds. In

that case 180 is recorded as the time taken, however, this is merely a feature to avoid

long experiment sessions and has in fact not been triggered by any participant.

18

4.4. Survey
Description
The survey component is responsible for displaying the survey and recording the

submitted answers. Any number of survey questions can be added. Questions can be

customized, allowing to prepare for other experiment types than were performed in the

course of the thesis. Below is an example for how a survey question is set up in the

engine. The question text can be customized, as well as the number and content of

answers. Pictured below is an example for a survey question configuration:

4.5. Azure
Description
Interface component that is used to update the experiment results to a Microsoft Azure

storage.

4.6. Data collection and processing
Description
At the end of the experiment, the experiment data is automatically uploaded to a

Microsoft Azure server.

19

Declaration of Authorship
This is to certify that the content of this project, documentation and thesis is my own

work. It has not been submitted for any other degree or other purposes. I certify that

the intellectual content of my submission is the product of my own work and that all

the assistance received in preparing it as well as all sources used have been properly

acknowledged.

Cologne, September 17, 2021

Vadim Nickel

	1. Development
	1.1. Background
	1.2. Proof-of-concept
	1.3. Implementation
	1.4. Prototyping
	1.5. Technology

	2. Control components
	2.1. ProcMu Master
	2.2. Interpolator
	2.3. ProcMu Guidance
	2.4. Music Zone

	3. Music configuration
	3.1. General settings
	3.2. Euclidean Rhythms
	3.3. Chord Player
	3.4. Sample And Hold Melody / Sample and Hold Bass
	3.5. Synthesizer configuration
	3.6. Scale

	4. Technical implementation of experiment
	4.1. Experiment Starter
	4.2. Experiment Conductor
	4.3. Game Action
	4.4. Survey
	4.5. Azure
	4.6. Data collection and processing

	Declaration of Authorship

